One Two
Sie sind hier: Startseite IceCube Collaboration Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

IceCube C M.G. Aartsen et al (2013)

Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory

arXiv:1310.5477 [astro-ph.HE].

We have searched for extremely high energy neutrinos using data taken with the IceCube detector between May 2010 and May 2012. Two neutrino induced particle shower events with energies around 1 PeV were observed, as reported previously. In this work, we investigate whether these events could originate from cosmogenic neutrinos produced in the interactions of ultra-high energy cosmic-rays with ambient photons while propagating through intergalactic space. Exploiting IceCube's large exposure for extremely high energy neutrinos and the lack of observed events above 100 PeV, we can rule out the corresponding models at more than 90% confidence level. The model independent quasi-differential 90% CL upper limit, which amounts to E2ϕνe+νμ+ντ=1.2×10−7 GeV cm−2 s−1 sr−1 at 1 EeV, provides the most stringent constraint in the energy range from 10 PeV to 10 EeV. Our observation disfavors strong cosmological evolution of the highest energy cosmic ray sources such as the Fanaroff-Riley type II class of radio galaxies.